Channel Coding

Recap...

\square Information is transmitted through channels (eg. Wires, optical fibres and even air)
\square Channels are noisy and we do not receive what was transmitted

System Model

- A Binary Symmetric Channel

\square Crossover with probability p

Repetition Coding

\square Assume $1 / 3$ repetition
$0 \rightarrow 000$
\square What is the probability of $1 \rightarrow 111$ error?

$$
P_{e}={ }^{3} C_{2} p^{2}(1-p)+p^{3}
$$

\square If crossover probability $p=0.01, \mathrm{Pe} \approx$ 0.0003
\square Here coding rate $R=1 / 3$. Can we do better? How much better?

Shannon's Theorem

\square Given,

- A noisy channel (some fixed p)
- A value of Pe which we want to achieve
"We can transmit through the channel and achieve this probability of error at a maximum coding rate of $C(p)^{\prime \prime}$
\square Is it counterintuitive?
\square Do such good codes exist?

Channel Capacity

$\square \mathrm{C}(p)$ is called the channel capacity
\square For binary symmetric channel,

$$
C(p=0.01)=0.9192
$$

\square Can we really design codes that achieve this rate? How?

Parity Check Codes

\square \#information bits transmitted $=k$
\square \#bits actually transmitted $=n=k+1$
\square Code Rate $R=k / n=k /(k+1)$
\square Error detecting capability $=1$
\square Error correcting capability $=0$

2-D Parity Check

\square Rate?

\square Error detecting capability?

- Error correcting capability?

Bottom row consists of check bit for each column

Linear Block Codes

\square \#parity bits $\mathrm{n}-\mathrm{k}$ ($=1$ for Parity Check)
\square Message $m=\left\{m_{1} m_{2} \ldots m_{k}\right\}$
\square Transmitted Codeword $c=\left\{c_{1} c_{2} \ldots c_{n}\right\}$
\square A generator matrix $G_{k x n}$

$$
c=m G
$$

\square What is G for repetition code?
\square For parity check code?

Linear Block Codes

\square Linearity

$$
c_{1} \oplus c_{2}=\left(m_{1} \oplus m_{2}\right) G
$$

$$
\begin{aligned}
& c_{1}=m_{1} G \\
& c_{2}=m_{2} G
\end{aligned}
$$

\square Example : 4/7 Hamming Code - $k=4, n=7$

- 4 message bits at $(3,5,6,7)$
- 3 parity bits at $(1,2,4)$
- Error correcting capability $=1$
- Error detecting capability = 2
- What is G ?

Cyclic codes

\square Special case of Linear Block Codes
\square Cyclic shift of a codeword is also a codeword

- Easy to encode and decode,
- Can correct continuous bursts of errors
- CRC (used in Wireless LANs), BCH codes, Hamming Codes, Reed Solomon Codes (used in CDs)

Convolutional Codes

\square Block codes require a buffer
\square What if data is available serially bit by bit? Convolutional Codes

- Example
$\mathrm{k}=1$
$\mathrm{n}=2$
Rate $R=1 / 2$

Convolutional Codes

\square Encoder consists of shift registers forming a finite state machine
\square Decoding is also simple - Viterbi Decoder which works by tracking these states
\square First used by NASA in the voyager space programme
\square Extensively used in coding speech data in mobile phones

Achieving Capacity

\square Do Block codes and Convolutional codes achieve Shannon Capacity? Actually they are far away
\square Achieving Capacity requires large k (block lengths)
\square Decoder complexity for both codes increases exponentially with k - not feasible to implement

Turbo Codes

\square Proposed by Berrou \& Glavieux in 1993
\square Advantages

- Use very large block lengths
- Have feasible decoding complexity
- Perform very close to capacity
\square Limitation - delay, complexity

Summary

\square There is a limit on the how good codes can be
\square Linear Block Codes and Convolutional Codes have traditionally been used for error detection and correction
\square Turbo codes in 1993 introduced a new way of designing very good codes with feasible decoding complexity

